STATE BOARD OF TECHNICAL EDUCATION, BIHAR Scheme of Teaching and Examinations for IIIrd SEMESTER DIPLOMA IN ELECTRONICS (ROBOTICS) ENGG. (Effective from Session 2022-23 Batch) THEORY

					IIILONI						
		SUBJECT CODE	TEACHING SCHEME			EXA	MINATION-	SCHEME			
Sr. No.	SUBJECT		Periods per Week	Hours of Exam.	Teacher's Assessment (TA) Marks A	Class Test (CT) Marks B	End Semester Exam (ESE) Marks C	Total Marks (A+B+C)	Pass Marks in ESE	Pass Marks in the Subject	Credits
	Measuring instruments and sensors	2043301	03	03	10	20	70	100	28	40	03
2.	Electronic Devices and Circuits	2021302	04	03	10	20	70	100	28	40	04
3.	Digital Electronics	2021303	03	03	10	20	70	100	28	40	02
	Manufacturing Technology	2043304	04	03	10	20	70	100	28	40	03
	Electric circuits and network	2021305	04	03	10	20	70	100	28	40	03
			18				350	500			15

PRACTICAL

Sr.		SUBJECT CODE	TEACHING SCHEME			EXAMINAT SCHEMI			
No.	SUBJECT		Periods per Week	Hours of Exam.	Practica Internal (PA)	l External (ESE)	Total Marks (PA+E SE)	Pass Marks in the Subject	Credits
6.	Electronic Devices and Circuits Lab	2043306	04	03	15	35	50	20	02
7.	Measuring instruments and sensors	2043307	04	03	15	35	50	20	02
8.	Digital Electronics Lab	2043308	04	03	15	35	50	20	02
	Total:-		12		•		150		06

TERM WORK

		SUBJECT CODE			TEACHING SCHEME	EXAMINATION-SCHEME					
Sr. No.		SUBJECT		Periods per Week	Marks of Internal Examiner (PA)	Marks of External Examiner (ESE)	Total Marks (PA+E SE)	Pass Marks in the Subject	Credits		
9.	Summer in of 2 nd Sem	nternship (after the end ester)	2043309	4 Weeks	15	35	50	20	02		
	Course Un PYTHON /	der Moocs /Swayam/ Others	2043310	02	15	35	50	20	01		
		Total:-		02			100		03		
		Total Periods per we	ek Each of d	luration One Ho	ur 32		Total Mar		24		

Measuring instruments and sensors

	Theory			No of Period in one set	Credits		
Subject Code	No. (of Periods Per V	Veek	Full Marks	:	100	
2043301	L	Т	P/S	ESE	:	70	03
	03	_	—	ТА	:	10	03
				СТ	:	20	

Course Objective:

- 1. To Define the characteristics of instruments.
- 2. To Explain the principle and working of analog instruments.
- 3. To Draw and explain the block diagram of CRO and DSO.
- 4. To Understand the various types of Digital instruments.
- 5. To Explain inductive, capacitive, ultrasonic, hall effect, pyro electric sensors for various measurements.
- 6. To Study advanced sensors for various measurements.
- 7. To Understand recent trends in sensors technologies

COURSE OUTCOMES (COs):

After the completion of course, students will be able to

- 1. Understand the working of various types of AC and DC bridges.
- 2. Use the relevant instrument to measure specified parameters.
- 3. Calibrate different electronic instrument.
- 4. Interpret working of various types of sensors and transducers.
- 5. Use various types of transducers and sensors to measure quantities.

CONTENTS: THEORY

	Name of the Topic	Hrs
Unit -1	 ANALOG INSTRUMENTS 1.1 Characteristics of Instruments – True value, Accuracy, Precision, Sensitivity, Reproducibility, Drift, Static Error and Correction, Resolution. 1.2 Classification of Instruments – Primary and Secondary Instruments – Indicating, Recording & Integrating instruments. 1.3 Operating forces – Deflecting, Controlling and Damping force. 1.4 Instruments - Permanent Magnet Moving Coil instrument, Moving Iron Instrument – attraction and repulsion type, Analog Multi-meter, Dynamometer Watt meter, Single phase induction type Energy meter. 	08
Unit -2	 CRO & BRIDGES: 2.1 CRO - Block diagram of oscilloscope construction and working of CRT, Horizontal deflection, Vertical deflection, Delay line, Time base generator, Electrostatic focusing and Electrostatic deflection (No derivation), applications of CRO, Digital Storage Oscilloscope. 2.2 Bridges – Construction, working, balance equation (derivation not required) & applications of – measurement of resistance by wheat stone bridge, measurement of capacitance by Schering Bridge, measurement of inductance by Maxwell's bridge. 	

Unit -3	DIGITAL INSTRUMENTS, DISPLAYS AND RECORDERS: Digital Instruments 3.1 Digital Vs Analog Instruments – Auto ranging – Auto zeroing – Auto Polarity – Block diagram of Digital Multimeter, Digital frequency counter, Digital Tachometer. Displays –Seven Segment Display, Alpha Numeric display, Liquid Vapour display (LVD). Recorders – Strip-chart recorder, X-Y recorder, CD recording and reproduction.	06
Unit -4	BASIC SENSORS:	
	4.1Sensors and Transducers-definition	
	4.2 Difference between sensors and transducers	
	4.3 classification – Active and Passive sensors.	
	4.4 Capacitive Sensors: The parallel plate capacitive sensors, Variable permittivity	
	capacitive sensors, advantages and disadvantages, Capacitive sensors for liquid level measurement.	10
	4.5 Ultrasonic Sensors: for Level Measurement and Distance Measurement.	
	4.6 Hall effect Sensors: Hall effect, Hall effect sensors for Displacement measurement	
	Fluid level measurement.	
	4.7 Pyro electric Sensors: Pyro electric Sensors as Thermal Detector	
Unit -5	ADVANCED SENSORS:	
	5.1 Fiber optic Sensors: Temperature sensors, Liquid level sensing, Fluid flow sensing, Micro	
	bend sensors, Advantages of fiber optic sensors Smart Sensors: Primary sensors, Excitation,	00
	Amplification, filter, converters, information coding/processing, data communication, the	08
	automation. Automotive Sensors (On-Board automobile sensors): - Flow-rate sensors,	
	pressure sensors, oxygen sensors, torque and position sensors. Recent trends in Sensor Technologies: - Film sensors- Thick film and Thin film sensors MEMS – Advantages and	
	Applications of MEMS, micro machining, MEMS Accelerometer Nano sensors.	

Suggested Text Book/Reference Book:

- 1. A Course in Electrical and Electronics Measurements and Instrumentation-A.K.Sawhney, Dhanpat Rai & Co private limited.
- 2. Sensors and Transducers D.Patranabis, PHI Learning Private Limited.
- 3. Electrical and Electronics Measurement and Instrumentation R.K. Rajput, S.Chand & co.
- 4. Electrical and Electronics Measurement and Instrumentation Umesh Sinha, Satyaprakasan, Tech. India Pub.

		01110 2 0 110					
		Theory		No of Period in one session:60			Credits
Subject Code 2021302	No. of Periods Per Week			Full Marks	:	100	04
	L	Т	P/S	ESE	:	70	
2021302	04	—		TA	:	10	
	—	—	—	СТ	:	20	

Electronic Devices and Circuits

Course Objective:

- 1. To introduce basic semiconductor devices, their characteristics and application.
- 2. To understand analysis and design of simple diode circuits.
- 3. To learn to analyze the PN junction behavior at the circuit level and its role in the operation of diodes and active device.

COURSE OUTCOMES (COs):

- 1. Ability to analyze PN junctions in semiconductor devices under various conditions. Identify relevant natural construction materials.
- 2. Ability to design and analyze simple rectifiers and voltage regulators using diodes.
- 3. Ability to describe the behavior of special purpose diodes.
- 4. Ability to design and analyze simple BJT and MOSFET circuits.

Contents : Theory	Hrs
Unit -1 Semiconductor and Diodes	
1.1 Definition, Extrinsic/Intrinsic, N-type & p-type	
1.2 PN Junction Diode – Forward and Reverse Bias Characteristics	
1.3 Zener Diode – Principle, characteristics, construction, working	14
1.4 Diode Rectifiers – Half Wave and Full Wave.	14
1.5 Filters – C, LC and PI Filters.	
Unit -2 Bipolar Junction Transistor (BJT)	
2.1 NPN and PNP Transistor – Operation and characteristics	
2.2 Common Base Configuration – characteristics and working	
2.3 Common Emitter next line Configuration – characteristics and working	
2.4 Common Base Configuration – characteristics and working, High frequency model of BJT.	14
2.5 Classification of amplifiers, negative feedback	
Unit – 3 Field Effect Transistors	
3.1 FET – Working Principle, Classification MOSFET Small Signal model	
3.2 N-Channel/ P-Channel MOSFETs – characteristics, enhancement and depletion mode,	12
3.3 MOS- FET as a Switch Common Source Amplifiers	
3.4 Uni-Junction Transistor – equivalent circuit and operation	
Unit – 4 SCR, DIAC & TRIAC	
4.1 SCR – Construction, operation, working, characteristics	
4.2 DIAC - Construction, operation, working, characteristics	
4.3 TRIAC - Construction, operation, working, characteristics	
4.4 SCR and MOSFET as a Switch, DIAC as bidirectional switch	10
4.5 Comparison of SCR, DIAC, TRIAC, MOSFET	10
Unit-5 Amplifiers and Oscillators	
5.1Feedback Amplifiers – Properties of negative Feedback	
5.2 Impact of feedback on different parameters	10
5.3 Basic Feedback Amplifier Topologies: Voltage Series, Voltage Shunt, Current Series, Curren	
Shunt	
5.4 Oscillator – Basic Principles, Crystal Oscillator, Non-linear/ Pulse Oscillator	

Suggested Text Book:

- 1. Analog Circuits by A.K. Maini Khanna Publishing House Ed. 2018
- 2. Electronic Devices and Circuits by S. Saliva Hanan and N. Suresh Kumar McGraw Hill Education
- 3. Electronics Devices and circuit theory Boylested & Nash- Elsy Pearson Education India
- 4. Electronic Principles Albert Melvino & David Bates Tata McGraw Hill Publication
- 5. Electronics Devices & Circuits Jacob Millman McGraw Hill Education

Digital Electronics

	Theory			No of Period in one se	Credits		
Subject Code	No. o	of Periods Per V	Veek	Full Marks	:	100	02
2021303	L	Т	P/S	ESE	:	70	
2021303	03			TA	:	10	
			—	СТ	:	20	

Course Objective:

- 1. To acquire the basic knowledge of digital logic levels and application of knowledge to understand digital electronics circuits.
- 2. To impart how to design Digital Circuits.

COURSE OUTCOMES (COs):

- 1. Use number system and codes for interpreting working of digital system.
- 2. Use Boolean expressions to realize logic circuits.
- **3.** Build simple combinational circuits.
- 4. Build simple sequential circuits.
- 5. Test data converters and PLDs in digital electronic systems

Contents : Theory

	Name of the Topic	Hrs
Unit -1	Number Systems & Boolean Algebra	
	1.1 Introduction to different number systems – Binary, Octal, Decimal, Hexadecimal	08
	Conversion from one number system to another.	
	1.2 Boolean variables – Rules and laws of Boolean Algebra	
	1.3 De-Morgan's Theorem Karnaugh Maps and their use for simplification of Boolean expressions	
Unit -2	Logic Gates	
	 2.1 Logic Gates – AND, OR, NOT, NAND, NOR, XOR, XNOR: 2.2 Symbolic representation and truth table. 2.3 Implementation of Boolean expressions and Logic Functions using gates Simplification of expressions. 	08
Unit – 3	Combinational Logic Circuits	
	 3.1 Arithmetic Circuits – Addition, Subtraction, 1's 2's Complement, Half Adder, Full Adder, 3.2 Half Subtractor, Full Subtractor, Parallel and Series Adders, Encoder, Decoder 3.3 Multiplexer – 2 to 1 MUX, 4 to 1 MUX, 8 to 1 MUX. Applications 3.4 Demultiplexer – 1 to 2 DEMUX, 1- 4 DEMUX, 1- 8 DEMUX 	12

Unit – 4	Sequential Logic Circuits	
	 4.1 Flip Flops – SR, JK, T, D, FF, JK-MS. 4.2 Triggering Counters – 4 bit Up – Down Counters. 4.3 Asynchronous/ Ripple Counter, Decade Counter. 4.4 Mod 3, Mod 7 Counter, Johnson Counter, Ring Counter 4.5 Registers – 4bit Shift Register: 4.6 Serial In Serial Out, Serial in Parallel Out, Parallel In Serial Out, Parallel In Parallel Out 	12
Unit – 5	 Memory Devices 5.1 Classification of Memories – RAM Organization, Address Lines and Memory Sixe, Static 5.2 RAM, Bipolar RAM, cell Dynamic RAM, D RAM, DDR RAM 5.3 Read Only memory – ROM organization, Expanding memory, PROM, EPROM, 5.4 EEPROM, Flash memory 5.5 Data Converters – Digital to Analog converters, Analog to Digital Converters 	10
	TOTAL	50

Suggested Text Book/Reference Books:

- 1. Digital principles & Applications Albert Paul Malvino & Donald P. Leach McGraw Hill Education.
- 2. Digital Electronics Roger L. Tok Heim Macmillan McGraw-Hill Education.
- 3. Digital Electronics an introduction to theory and practice William H. Goth-Mann Prentice Hall India Learning Private Limited.
- 4. Fundamentals of Logic Design Charles H. Roth Jr. Jaco Publishing House.
- 5. Digital Electronics R. Anand Khanna Publications.

Manufacturing Technology

		Theory		No of Period in one se	Credits		
Subject Code	No.	of Periods Per V	Veek	Full Marks	:	100	03
2043304	L T		P/S	ESE	:	70	
2045504	04	—	_	TA	:	10	
	—	—	_	СТ	:	20	

CourseObjective:

- 1. To explain the working of machine tools Lathe, planer, shaper.
- 2. To compare various work holding devices.
- 3. To explain the working of machine tools drilling machine, Milling machine.
- 4. To distinguish various types of milling cutter.
- 5. To classify different types of grinders and grinding wheels.
- 6. To explain the broaching operation and their application.
- 7. To explain the working of various unconventional machines.
- 8. To explain the various types of Measuring instruments.

COURSE OUTCOMES(COs):

- 1. To Select Appropriate Manufacturing Processing to manufacture any component.
- 2. To Interpret foundry practices like pattern making, mold making, Core making and Inspection of defects.
- **3.** To Differentiate various metal forming processes such as Hot and Cold Working, Rolling, Forging, Extrusion and Drawing Processes.

CONTENTS: THEORY

	Name Of The Topic	Hrs
Unit -1	Lathe: Types, specification, sketch, principle parts-headstock, tailstock, carriage, and tool post. Operations performed on Lathe: turning, thread cutting, drilling, boring, reaming, tapping, knurling, forming, thread cutting, taper turning. Planer: Types of planers-description of double housing planer – specifications-principles of operation-drives-quick return mechanism-feed mechanism-types, work holding devices and special fixtures-types of tools-various operation. Shaper: Types of shaper-specifications-standard-plain-universal principles of operations-drives-quick return mechanism-drives-quick return mechanism-drives-quick return mechanism-work holding devices-tools and fixtures.	12
Unit -2	Drilling machines: Drills-flat drills-twist drills-nomenclature-types of drilling machines-bench type-floor type-radial type-gang drill –multi spindle type-principle of operation in drilling-speeds and feeds for various materials-drilling holes- methods of holding drill bit-drill chucks-socket and sleeve-drilling-reaming-counter sinking counter boring-spot facing- tapping-deep hole drill-drill jigs. Milling machines: Types-column and knee type-plain-universal milling machine vertical milling machine-specification of milling machines principles of operation-work and tool holding devices-arbor-stub arbor-spring collets-adaptors-milling cutters-plain milling cutters lab milling cutter- slitting saw-side milling cutter woodruff milling cutter-fly cutter nomenclature of milling cutter-T-slot milling machines-straddle milling-gang milling-climb milling-milling attachment-types of milling fixtures	12

Unit – 3	Grinding machines:	
	Types and classification-specifications-rough grinders-floor	
	mounted hand grinders-portable grinders-belt grinders-precision	
	grinders-cylindrical, surface, centre less grinders-internal grindersplanetary grinders-	
	principles of operations-grinding wheelsabrasives-natural and artificial-dressing and	12
	truing of wheelsbalancing of grinding wheels-diamond wheels-types of bonds-grit,	
	grade and structure of wheels-wheels shapes and sizes-standard	
	marking systems of grinding wheels-selection of grinding wheelmounting of grinding	
	wheels.	
	Broaching:	
	Types of broaching machine-horizontal vertical and	
	continuous broaching-principles of operation-types of broachesclassification-broach tool	
	nomenclature-broaching operationssimple examples.	
Unit – 4	Unconventional Machining Processes	
	Unconventional machining process-need – classification-Abrasive	
	jet machining (AJM) working principle -applications – water jet	
	machining (WJM) – working principle –applications- Abrasive	
	water jet machining (AWJM) – working principle –applicationsElectric discharge	
	machining (EDM) - wire cut EDM- working	12
	principle -applications –Chemical machining and Electro chemical	
	machining – working principle -applications -Laser beam	
	machining and drilling- working principle -applications Plasma arc	
	machining- working principle -applications -Electron beam	
	machining –working principle -applications	
Unit – 5	Accuracy – Precision – Tolerance – Surface finish – Quality –	
1	Reliability – Interchangeability – optical fundamentals – optical	
	instruments – principles of operation- interference band -	
	Measurement of Length – Classification of measuring instruments	
	– Radius measurement – Measurement of Angles – Sine bar and	12
	slip gauges, Sine bar and spirit level, Angle gauges Measurement of Tapers –Vernier	
	bevel protractor, Tool room	
	microscope, Autocollimator, External taper – Ring gauge	
	measurement by balls and slip gauges –ring gauge measurement	
	by unequal balls – Screw threads Inspection –Elements of a	
	thread-gauging of screw threads – thread gauges – Measurement	
	of individual elements of a screw thread – Measurement of	
	External threads	

SuggestedBooks:

- 1. HajraChoudhry "work shop technology" Vol.II Media Promoters and Publishers Pvt Ltd.
- 2. Jain R.K "Production Technology" Khanna Publishers.
- 3. M I khan ,ErajulHaque "Manufacturing Science" PHI Learning Pvt Ltd.
- 4. Vijay K Jain "Advanced machining processes" Allied publishers pvt Ltd., New delhi 2007.

		Theory					Credits
Subject Code	No. of Periods Per Week		Full Marks	:	100	03	
2021305	L	Т	P/S	ESE	:	70	
2021303	04	_	_	TA	:	10	
	_	_	_	СТ	:	20	

Electric circuits and network

Course Objective:

1. To provide a methodical approach to problem solving.

2. To learn a number of powerful engineering circuit analysis techniques such as nodal analysis, mesh analysis, theorems, source transformation and several methods of simplifying networks.

3. To understand the concept of graphical solution to electrical network

4. To understand frequency response in electrical circuits

Course outcomes:

After successful completion of the course, the students are able to

- 1. Apply the knowledge of basic circuital laws and simplify the dc and ac networks using reduction techniques.
- 2. Analyze the dc and ac circuits using mesh and nodal analysis and network simplification theorems.
- 3. Analyze the series and parallel resonant circuits.
- 4. Infer and evaluate transient response, steady state response of series, parallel and compound circuits.

CONTENTS: THEORY

	Name of the Topic	Hrs
Unit -1	Basics of Network and Network Theorem Node and Mesh Analysis Superposition Theorem Thevenin Theorem Norton Theorem Maximum Power transfer theorem Reciprocity Theorem	12
Unit -2	Graph Theory Graph of network, tree, incidence matrix F Tie-Set Analysis F Cut-Set Analysis Analysis of resistive network using tie-set and cut-set Duality	06
Unit – 3	Time Domain and Frequency Domain AnalysisSolution of first and second order differential equations for Series and parallel R-L,R-C, R-L-C circuitsInitial and Final conditions in network elements Forced and Free response, timeconstantsSteady State and Transient State ResponseAnalysis of electrical circuits using Laplace Transform for standard inputs (unit,Ramp,Step)	12
Unit – 4	Trigonometric and exponential Fourier series Discrete spectra and symmetry of waveform Steady state response of a network to non-sinusoidal periodic inputs, power factor, effective values Fourier transform and continuous spectra.	10

Unit-5	Two Port Network Two Port Network Open Circuit Impedance Parameters Short Circuit Admittance Parameters Transmission Parameters Hybrid Parameters Interrelationship of Two Port Network Inter Connection of Two Port Network	10
	Total	50

Suggested Text Book/Reference Book:

- 1. Networks and Systems Ashfaq Husain Khanna Publishing House
- 2. Network Analysis M. E. Van Valkenburg Prentice Hall of India
- 3. Engineering Circuit Analysis W. H. Hayat, J. E.Kemery and S. M.Durbin McGraw Hill
- 4. Electrical Circuits Joseph Ed minister Schumm's Outline, Tata McGraw Hill
- 5. Basic Circuit Theory Lawrence P.Huelsman Prentice Hall of India
- 6. Network & Systems D. Roy Choudhury Wiley Eastern Ltd
- 7. Linear Circuit Analysis De Carlo and Lin Oxford Press

Subject Code	Practical						Credits
2043306	No.	of Periods Per V	Veek	Full Marks	:	50	
	L	Т	P/S	Internal (PA)	:	15	02
	—	—	04	External (ESE)	:	35	

Electronic Devices and Circuits Lab

List of Practical's

- 1. Construct the circuit and plot the VI characteristics of the PN Junction Diode, find the cut in voltage.
- 2. Construct the circuit and plot the characteristics of a Zener Diode. Find the breakdown voltage.
- 3. Construct a Half Wave Rectifier and obtain regulation characteristics Without Filters and with Filters. Compare the results.
- 4. Construct a Full Wave Rectifier and obtain regulation characteristics Without Filters and with Filters. Compare the results.
- 5. Construct a Bridge Rectifier and obtain regulation characteristics Without Filters and with Filters.
- 6. Obtain the characteristics of DIAC and TRIAC.
- 7. Simulate half wave, full wave and bridge rectifier using simulation tool like PSpice/ OrCAD/ Multisim
- 8. Develop a simulation model for Voltage Series and Voltage Shunt Feedback Amplifiers.
- 9. Develop circuits for Voltage Series and Voltage Shunt Feedback Amplifiers and obtain output plots. Compare the results with the simulation model.
- 10. Develop a simulation model for Current Series and Current Shunt Feedback Amplifiers.

List of Experiments	Lab Session Learning outcome
1. Construct the circuit and plot the VI characteristics of the PN Junction	(a) Follow safety precautions for circuit connections.
Diode, find the cut in voltage.	 (b) Connect the identified components to connect P-N junction Diode with proper Biasing. (c) Operate CRO with proper calibration. (d) Draw the graph of output characteristics of PN junction Diode with the help of CROs using butter paper. (e) Obtain cut-in voltage from graph.
2. Construct the circuit and plot the characteristics of a Zener Diode. Find the breakdown voltage.	 (a) Follow safety precautions for circuit connections. (b) Connect the identified components to form circuit connection of ZENER Diode. (c) Operate CRO with proper calibration. (d) Draw the graph of output characteristics of ZENER diode with the help of Butter paper. (e) Measure the breakdown voltage from graph of VI Characteristics.
 Construct a Half Wave Rectifier and obtain regulation characteristics – Without Filters and with Filters. 	(a) Configure the half-wave rectifier circuit as circuit diagram without capacitor after testing all the components.(b) Maintain proper settings of multimeter for ac

Compare the regults	and dc measurement.
Compare the results.	
	(c) Observe the transformer secondary voltage
	waveform and output voltage waveform across the
	load resistor on the CRO screen with proper
	calibration.
	(d) Calculate the ripple factor, rectifier efficiency and
	% regulation using the expressions.
	(e) Connect the capacitor filter and observe the
	waveforms on the CRO screen with proper
	calibration.
	(f) Trace the input and output waveforms in
	oscilloscope with and without filters using butter
	paper.
	(g) Compare both results.
	(h) Follow safe practices.
4. Construct a Full Wave Rectifier and	(a) Configure the Full-wave rectifier circuit as circuit
obtain regulation characteristics –	diagram without capacitor after testing all the
Without Filters and with Filters.	components.
Compare the results.	(b) Maintain proper settings of multimeter for ac
1	and dc measurement.
	(c) Observe the transformer secondary voltage
	waveform and output voltage waveform across the
	load resistor on the CRO screen with proper
	calibration.
	(d) Calculate the ripple factor, rectifier efficiency and
	% regulation using the expressions.
	(e) Connect the capacitor filter and observe the
	waveforms on the CRO screen with proper calibration.
	(f) Trace the input and output waveforms in
	oscilloscope with and without filters using butter
	paper.
	(g) Compare both results.
	(h) Follow safe practices.
5. Construct a Bridge Rectifier and	(a) Configure the Bridge-wave rectifier circuit as
obtain regulation characteristics –	circuit diagram without capacitor after testing all the
Without Filters and with Filters.	components.
	(b) Maintain proper settings of multimeter for ac
	and dc measurement.
	(c) Observe the transformer secondary voltage
	waveform and output voltage waveform across the
	load resistor on the CRO screen with proper
	calibration.
	(d) Calculate the ripple factor, rectifier efficiency and
	% regulation using the expressions.
	(e) Connect the capacitor filter and observe the
	waveforms on the CRO screen with proper
	calibration.
	(f) Trace the input and output waveforms in
	oscilloscope with and without filters using butter

	paper.
	(g) Compare both results.
	(h) Follow safe practices.
6. Obtain the characteristics of DIAC	(a) Follow safety precautions for circuit
and TRIAC.	connections.
	(b) Construct the circuit connection of DIAC and
	TRAIC using identified components.
	(c) Operate CRO with proper calibration.
	(d) Draw the graph of output characteristics of
	DIAC and TRAIC using CRO on butter paper.
7. Simulate half wave, full wave and	(a) Choose Multisim software.
bridge rectifier using simulation tool	(b) Create new tab for required circuit name
like PSpice/ Orcad/ Multisim	which is to be simulated.
	(c) Select the components by clicking on
	Tool Bar.
	(d) Draw the circuits using required
	components that are available in the
	tool bar and save the circuit.
	(e) Simulate the circuit by pressing F5 key.
	(f) Observe the output of the
	Oscilloscope for different rectifiers
	and measure input and output
	waveforms.
8. Develop a simulation model for	(a) Choose PSpice software for simulation.
Voltage Series and Voltage Shunt	(b) Create a new tab and rename the projects
Feedback Amplifiers.	for required simulation model.
L	(c) Draw the circuit by selecting components
	in MENU tab.
	(d) Connect the circuit by selecting wires.
	(e) Select the "SET UP" and select "AC
	SWEEP" for AC Analysis and select
	Transient for transient analysis.
	(f) Select "Electrical Rule Check" for the net list
	verification.
	(g) Simulate the circuit and analyze the results.
9. Develop circuits for Voltage Series	(a) Choose PSpice software for simulation.
and Voltage Shunt Feedback	(b) Create a new tab and rename the projects
Amplifiers and obtain output plots.	for required simulation model.
Compare the results with the	(c) Draw the circuit by selecting components
simulation model.	in MENU tab.
	(d) Connect the circuit by selecting wires.
	(e) Select the "SET UP" and select "AC
	SWEEP" for AC Analysis and select
	Transient for transient analysis.
	(f) Select "Electrical Rule Check" for the net list
	verification.
	(g) Simulate the circuit and analyze the results.
10. Develop a simulation model for	(a) Choose PSpice software for simulation.

	r
Current Series and Current Shunt	(b) Create a new tab and rename the projects
Feedback Amplifiers.	for required simulation model.
	(c) Draw the circuit by selecting components
	in MENU tab.
	(d) Connect the circuit by selecting wires.
	(e)Select the "SET UP" and select "AC SWEEP"
	for AC Analysis and select Transient for transient
	analysis.
	(f) Select "Electrical Rule Check" for the net list
	verification.
	(g) Simulate the circuit and analyze the results.

Reference Book:

- 1. Analog Circuits by A.K. Maini Khanna Publishing House Ed. 2018
- 2. Electronic Devices and Circuits by S. Saliva Hanan and N. Suresh Kumar McGraw Hill Education
- 3. Electronics Devices and circuit theory Boylested & Nash-Elsy Pearson Education India
- 4. Electronic Principles Albert Melvino & David Bates Tata McGraw Hill Publication
- 5. Electronics Devices & Circuits Jacob Millman McGraw Hill Education

Practical Credits **Subject Code** No. of Periods Per Week Full Marks 50 : P/S L ESE Т : 2043307 02 04 Internal 15 ___ ____ : ____ ____ ___ External : 35

MEASURING INSTRUMENTS AND SENSORS LAB

List of Practicals:

- 1. Measure unknown inductance using following bridges (a) Anderson Bridge (b) Maxwell Bridge.
- 2. Measure Low resistance by Kelvin's Double Bridge.
- 3. Calibrate an ammeter using DC slide wire potentiometer.
- 4. Calibrate a voltmeter using Crompton potentiometer.
- 5. Measure low resistance by Crompton potentiometer.
- 6. Calibrate a single-phase energy meter by phantom loading.
- 7. Study the working of Q-meter and measure Q of coils.
- 8. Study working and applications of (i) C.R.O. (ii) Digital Storage C.R.O. & (ii) C.R.O. Probes.
- 9. Measurement of displacement with the help of LVDT.
- 10. Draw the characteristics of the following temperature transducers (a) RTD (Pt100) (b) Thermistor.
- 11. Measurement of strain/force with the help of strain gauge load cell.

List of Experiments	Lab Session Learning outcome
 Measure unknown inductance using following bridges (a) Anderson Bridge (b) Maxwell Bridge. 	 (a) select the value of the coil from the set inductor value option on the device. (b) Switch on the supply so that the device can get Milli-voltmeter deflection. (c) Set the values from the resistance and capacitance box. (d) Absorb the device until the Millivoltmeter pointer reaches the "Null" value. (e) Observe the inductor value and its unknown internal resistance. (f) Follow safe practices.
 Measure Low resistance by Kelvin's Double Bridge. 	 (a) Assemble the circuit diagram as per connection diagram. (b) Connect the unknown resistance at R terminals. (c) Select the range selection switch. (d) Vary the potentiometer to obtain null balance. (e) Measure the resistance using multimeter after switch off the unit. (f) Tabulate the readings and calculate the value of resistance.
3. Calibrate an ammeter using DC slide wire potentiometer.	
4. Calibrate a voltmeter using Crompton potentiometer.	
5. Measure low resistance by Crompton potentiometer.	

6. Calibrate a single-phase energy meter by phantom loading.	
7. Study the working of Q-meter and measure Q of coils.	
 Study working and applications of (i) C.R.O. (ii) Digital Storage C.R.O. & (ii) C.R.O. Probes. 	
9. Measurement of displacement with the help of LVDT.	
10. Draw the characteristics of the following temperature transducers (a) RTD (Pt100) (b) Thermistor.	
11. Measurement of strain/force with the help of strain gauge load cell.	

DIGITAL ELECTRONICS LAB

	Practical				Credits		
Subject Code	No. of Periods Per Week			Full Marks	:	50	
2043308	_	_	04	Internal (PA)	:	15	
	_	_	—	External (ESE)	:	35	02

List of Practical's:

- To verify the truth tables for all logic fates NOT OR AND NAND NOR XOR XNOR using CMOS Logic gates and TTL Logic Gates.
- 2. Implement and realize Boolean Expressions with Logic Gates.
- 3. Implement Half Adder, Full Adder, Half Subtractor, Full Subtractor using IC.
- 4. Implement parallel and serial full-adder using ICs.
- 5. Design and development of Multiplexer and De-multiplexer using multiplexer using ICs.
- 6. Verification of the function of SR,D, JK and T Flip Flops.
- 7. Design controlled shift registers .
- 8. Construct a Single digit Decade Counter (0-9) with 7 segment display.
- 9. To design a programmable Up-Down Counter with a 7-segment display.
- 10. Study of different memory ICs .
- 11. Study Digital- to Analog and Analog to Digital Converters.
- 12. Simulate in Software (such as PSpice) an Analog to Digital Converter.
- 13. Simulate in Software (such as PSpice) an Analog to Digital Converter

List of Experiments	Lab Session Learning outcome
1. To verify the truth tables for	(a) Identify the required circuit components.
all logic fates – NOT OR	(b) Demonstrate the components for their working.
AND NAND NOR XOR	(c) Insert the appropriate ICs into the IC base.
XNOR using CMOS Logic	(d) Make connections as shown in the circuit diagram.
gates and TTL Logic Gates.	(e) Provide the input data via the input switches and
	observe the output-on-output LEDs.
	(f) Verify the truth table.
	(g) Follow safe practices.
2. Implement and realize	(a) Place the Digital kit lab at one place.
Boolean Expressions with	(b) Take the one AND gate ICs, IC no.7408, one NOT
Logic Gates.	gate IC i.e., IC no. 7404 and one OR gate IC i.e., IC no. 7432.
	(c) Place these 3 ICs in the breadboard one by one.
	 (d) Connect the AND gate with the inputs of A and B and other AND gate in the same IC is given by the complement input of the A and B i.e. A' and B' by using NOT gate with the help of connecting wires. (e) Give the output voltage V_{cc} and GROUND to all the
	ICs separately.
	(f) Realize the Boolean Expression with Logic Gates.
	(g) Make sure that the apparatus is switched off while placing ICs and connecting of wires.
	(h) Follow safe practices.
3. Implement Half Adder, Full	(a) Check the components for their working.
Adder, Half Subtractor, Full	(b) Insert the appropriate IC into the IC base.
Subtractor using IC.	(c) Make connections as shown in the circuit diagram.(d) Verify the Truth Table and observe the outputs.

4. Implement parallel and serial full-adder using ICs.	(a) Check the components for their working.(b) Insert the appropriate ICs into the IC base.
run-adder using res.	(c) Assemble the circuit as shown in the logic circuit
	diagram.
	(d) Apply various input data to the logic circuit via the
	input logic switches.
	(e) Note down the corresponding output and verify the
	truth table.(f) Follow safety precautions for circuit connections.
5. Design and development of	(a) Check all the components for their working.
Multiplexer and De-	(b) Insert the appropriate IC into the IC base.
multiplexer using	(c) Make connections as shown in the circuit diagram.
multiplexer using ICs.	(d) Verify the Truth Table and observe the outputs.
	(e) Follow safety precautions for circuit connections.
6. Verification of the function	(a) Assemble the circuit as per the circuit diagram.
of S, R, D, JK and T Flip	 (b) Apply the -ve edge triggered, +ve edge triggered and level sensitive clock pulses as required.
Flops.	(c) Verify the truth table of all the Flip – Flops.
	(d) Switch - off the power supply and disconnect the
	circuit.
	(e) Follow safety precautions for circuit connections.
7. Design controlled shift	(a) Identify the components for their working.
registers.	(b) Insert the appropriate IC into the IC base.
	(c) Draw the circuit as shown in the logic circuit diagram
	(d) Apply various input data to the logic circuit via the input logic switches.
	(e) Note down the corresponding output and verify the truth table.
8. Construct a Single digit	(a) Check all the components for their working.
Decade Counter (0-9) with 7	(b) Insert the appropriate IC into the IC base.
segment display.	(c) Draw the circuit as shown in the logic circuit diagram
	(d) Apply various input data to the logic circuit via the
	input logic switches.
	(e) Note down the corresponding output and verify it.(f) Follow safety precautions for circuit connections.
0. To design a numerous ship	(a) Charle all the common ante for their working
9. To design a programmable	(a) Check all the components for their working.(b) Insert the appropriate IC into the IC base.
Up-Down Counter with a 7-	(c) Draw the circuit as shown in the logic circuit diagram
segment display.	(d) Apply various input data to the logic circuit via the
	input logic switches.
	(e) Note down the corresponding output and verify it.
	(f) Follow safety precautions for circuit connections.
10. Study of different memory	(a) Identify different memory ICs.
ICs.	(b) Insert the appropriate IC into the IC base.
	(c) Follow safety precautions for circuit connections.
11. Study Digital- to – Analog	(a) Define various terms of A/D and D/A converters.
and Analog to Digital Converters.	(b) Understand the advantages, disadvantages, and limitation of several types of (DAC) and ADC
12. Simulate in Software (such	(a) Choose PSpice software for simulation.
as PSpice) an Analog to	(b) Create a new tab and rename the projects for

Digital Converter.	required simulation model.			
	(c) Draw the circuit by selecting components in			
	MENU tab.			
	(d) Connect the circuit by selecting wires.			
	(e) Select the "SET UP" and select "AC SWEEP" for			
	AC Analysis and select Transient for transient analysis.			
	(f) Select "Electrical Rule Check" for the net list verification.			
	(g) Simulate the circuit and analyze the results.			
13. Simulate in Software (such	(a) Choose PSpice software for simulation.			
as PSpice) an Analog to	(b) Create a new tab and rename the projects for			
Digital Converter	required simulation model.			
	(c) Draw the circuit by selecting components in			
	MENU tab.			
	(d) Connect the circuit by selecting wires.			
	(e) Select the "SET UP" and select "AC SWEEP" for			
	AC Analysis and select Transient for transient analysis.			
	(f) Select "Electrical Rule Check" for the net list verification.			
	(g) Simulate the circuit and analyze the results.			

SUMMER INTERNSHIP (after the end of 2nd Semester)

	Term V	Term Work					
Subject Code 2043309	No. of	Periods Per	Full Marks	:	50		
	L	Т	P/S	Internal (PA)	:	15	
			4 Week	External (ESE)	:	35	02

Lists of summer training programs: -

- 1. Summer Training in Robotics
- 2. Summer Training in IOT
- 3. Summer Training in Wireless Communication
- 4. Summer Training in Embedded Systems
- 5. Summer Training in Computer Vision
- 6. Summer Training in Machine Learning
- 7. Summer Training in Mechatronics

Course Under Moocs / Swayam / Python / Others

	Term Work						Credits
Subject Code 2043310	No. of Periods Per Week			Full Marks	:	50	
	L	Т	P/S				
			02	Internal(PA)	:	15	01
				External(ESE)	:	35	

Important courses under Moocs/Swayam/Python/Others: -

- 1. Basic Electrical Circuits
- 2. Semiconductor Devices and Circuits
- 3. Analog Electronic Circuits
- 4. Fundamentals of electronic device fabrication
- 5. Analog Communication
- 6. Principles and Techniques of Modern Radar Systems
- 7. Electrical Measurement and Electronic Instruments
- 8. Fundamentals of Electrical Engineering
- 9. Digital Circuits
- **10. VLSI Interconnects**
- **11. Basic Electric Circuits**
- 12. Principles of Communication Systems II